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Abstract— We develop hybrid f inite difference schemes arising from operator splitting to solve 2-D heat equations. We develop Crank-

Nicholson-Du Fort and Frankel-Lax-Friedrich’s method. We determine that the hybrid Crank-Nicholson-Du Fort and Frankel-Lax-Friedrich’s 

method is the more accurate than the pure Cranck-Nicholson Scheme. This method is also unconditionally stable because they are Crank-

Nicholson based. The methods that involve Du Fort and Frankel discretization are three-level. 

. 

Index Terms— Crank-Nicholson, Du-Fort and Frankel, Lax-Friendrich, Hybrid Finite Difference Scheme, Operator splitting, 2-Dimensional 

heat equation.   
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1 INTRODUCTION                                                                     

he 2-D parabolic equations are applicable in science, engi-
neering and mathematics. They are also used to describe 
heat and fluid movement in two directions. 

So far the methods that have been used to solve such equa-
tions are: Finite difference methods (FDM), Alternative Direc-
tion Implicit (ADI) methods and locally one dimensional 
method.  
Peaceman and Rachford [13] explained that in mathematics, 
the alternating direction implicit (ADI) method is a finite dif-
ference method for solving parabolic and elliptic partial dif-
ferential equations. It is mostly used to solve the problems of 
heat conduction for solving the diffusion equation in two or 
more dimensions. 
The idea behind the ADI method is to split the finite difference 
equations into two, one with the x-derivative taken implicitly 
and the next with the y-derivative taken implicitly. The sys-
tems of equations involved are symmetric and tridiagonal 
(banded with bandwidth 3), and thus cheap to solve. 
It has been shown that this method is unconditionally stable. 
There are more refined ADI methods such as the methods of 
Douglas [3], or the f-factor method (Chang [2]) which can be 
used for three or more dimensions.  
Koller [9] and Hochbruck and Osterman [6] demonstrate and 
discuss time integration due to operator splitting for linear 1-D 
parabolic equations.  

Ames [1] and Mitchel and Griffiths [12] describes additive 
operator splitting for parabolic equation which are more than 
one dimensional and were developed by Yanenko and Mar-
chuk.  
Another splitting method mentioned by the same author 
(Mitchel and Griffiths [12]) which is called second order was 
developed by Strang in the 1960s. Istvan [8] gives an elaborate 
discussion of operator splitting for parabolic equations. Le 
Veque and Oliger [11] describes additive operator splitting for 
hyperbolic partial difference equations. Splitting method has 
been used by Evje and Hvistendahl [4] to find the numerical 
solution of convection–diffusion equation. 
Galligani [5] reviews various additive operators splitting 
method for solving on parallel computers a large class of semi-
discrete diffusion problems. Hvistendahl and Risebro [7] in 
their paper presented a semi-discrete method for constructing 
approximate solution of a many dimensional convection diffu-
sion equation. 
Koross et al [10] solved the 1-D heat equation using operator 
splitting by modifying it. They developed hybrid finite differ-
ence method resulting from operator splitting for solving the 
modified form. In their paper they proved that there is an im-
provement in efficacy of the Crank-Nicholson scheme when 
the Lax-Friedrich’s and Du Fort and Frankel discretizations 
are used on it. They concluded in their research findings that 
the Crank-Nicholson-Lax-Friedrich-Du For and Frankel is the 
most accurate method for solving 1-D heat equation. 
In this paper we apply Koross’ [10] work to develop hybrid 
finite difference schemes arising from operator splitting that 
can be used to find numerical solution of 2-D heat equation. 
Among the methods to be developed are: Crank-Nicholson-
Du Fort and Frankel, Crank-Nicholson-Lax-Friedrichs, Crank-
Nicholson-Du Fort and Frankel-Lax Friedrich’s. We also de-
velop the pure Crank-Nicholson scheme. This will serve to 
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provide a good comparison of two and three level schemes. 
We organize this paper as follows: in section 2 we outline 

operator splitting, in section 3 we develop hybrid finite differ-
ence schemes and in section 4 we present and discuss the re-
sults 

2 OPERATOR SPLITTING  

 
We consider the parabolic equation 

             (       )  (   )         (2.1) 

 (     )    (   )                                                       (2.2) 

where      (     ). 

Koross et al [10] gave the outline of operator splitting for 1-D 

parabolic equation as 

  𝑈𝑚 𝑛+1  ∏ 𝑒𝑘𝐿 𝑠
𝑖=1  𝑈𝑚 𝑛                                           (2.3)  

We introduce another spatial direction in equation (2.3) and so 

we get 

𝑈𝑚 𝑙  𝑛+1  ∏ 𝑒𝑘𝐿 𝑠
𝑖=1  𝑈𝑚 𝑙  𝑛                                        (2.4)                         

                                                                       

The approximate solution can be obtained from equation (2.3) by 

first solving  

𝑈𝑚 𝑙 𝑛+1
(𝑠)

  𝑒𝑘𝐿 𝑈𝑚 𝑙 𝑛  

 and then using this solution we can find  
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We go on like this until we attain  

𝑈
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(1)
  

which is actually the approximate solution of equation (2.1). 

The approximate solution of (2.3) is found by 
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 We organize this paper as follows: in section 2 we outline opera-

tor splitting and develop hybrid finite difference schemes and in 

section 3, we present and discuss the results. 

  

3 DEVELOPMENT OF THE HYBRID SCHEMES 

3.1 Pure Crank-Nicholson (CN) scheme  

We consider the 2-D heat equation 

𝑈     𝑈      𝑈    (      1)  (   )  
  (     )                                                                 (3.1.1) 

Here 

      

and so  

 𝐿   𝐿1   𝐿2 where 𝐿1    
  

   
 ≈

1

  
  
2 and  𝐿2    

  

   
 ≈

1

  
  
2   

 It is necessary that we first develop the pure Crank-Nicholson 

method resulting from this splitting. This is because other hybrid 

methods are derived from it. Thus the Crank-Nicholson method is 

as follows: 

 

𝐿1 𝑈 𝑚 𝑙  𝑛  
 

4  
  
2 (𝑈𝑚 𝑙 𝑛    𝑈𝑚 𝑙 𝑛+1 )                              (3.1.2)                                                                                    

𝐿2 𝑈𝑚 𝑙 𝑛     
 

4  
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and 
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Using equations (3.1.2) - (3.1.8) in equation (2.5) we have pure 

Crank-Nicholson scheme. 

 

3.2 Crank-Nicholson-Du Fort and Frankel-Lax-
Friedrich’s (CN-DF-LF) scheme 

In the scheme obtained in section 3.2 we replace  𝑈𝑚 𝑙 𝑛−1 by 
1

2
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4  RESULTS OF THE NUMERICAL EXPERIMENTS 

We present the results using the following data:𝑘       1   
              1,   1, 

 (     )                  (     )  𝑒− 
             

We now present the results. We shall display these results using 

graphs, tables as well as 3-D figures.  
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Figure 1: Solutions for the 2-D heat equations at t= 0.001 when y=0.5
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Figure 1: Solutions for the 2-D heat equation from the different 
methods at t = 0.001 when y=0.5 

As expected the value of the solution is maximum when x = 0.5. 
This is because the analytic solution 
   (     )  𝑒− 

             is maximum when        
 

2
  

(that is at:        ). 
The graph is not smooth because the value of h is not small 
enough. When h is small enough the curve will be a smooth 
parabola. 
Table 1 below provides the solution of 2-D heat equation for 
the different schemes developed.  
 
Table 1: Solutions of the 2-D heat equations at t = 0.001 for the 
different schemes 

The Figure 1 and Table 1 does not provide a clear comparison be-
cause the curves almost coincide and the numbers are almost equal 
respectively. We provide a table of absolute errors to give us a clear 
comparison. This is done in Table 2. 

 
Table 2: Absolute errors in solution of 2-D heat equation from 
different schemes at t = 0.001 

x y CN CN-DF-LF 

0 0 0 0 
0.25 0.25 0.00438607715912 0.00436785378715 

0.5 0.25 0.00620284980402 0.00617707806424 
0.75 0.25 0.00438607715912 0.00436785378715 

0 0.25 0 0 

0.25 0.5 0.00620284980402 0.00617707806424 

0.5 0.5 0.00877215431818 0.00873570757428 
0.75 0.5 0.00620284980402 0.00617707806424 

0 0.5 0 0 
0.25 0.75 0.00438607715912 0.00436785378715 

0.5 0.75 0.00620284980402 0.00617707806424 

0.75 0.75 0.00438607715912 0.00436785378715 
0 0.75 0 0 

From Table 2 we can tell that hybrid CN-DF-LF provides the 
most accurate results because it produces the least absolute 
error. It is followed by CN-DF method. 
 
We now present 3-D solutions: 
 

 
Figure 2: CN solution for the 2-D heat              
                   equation when y = 0.5 

 

Figure 3: CN-DF-LF solution for the 2-D      
heat equation at  y = 0.5   
 
At any given value of t  the solution is a parabola as that of 
Figure 1. We note that the 3-D solutions from all the methods 
developed take the same shape. 
 

 5 CONCLUSION  

We have established that hybrid Crank-Nicholson-Lax-
Friedrich’s-Du-Fort and Frankel scheme is the most accurate 
compared to the Pure Crank-Nicholson method. There is an 
improvement of the efficacy of the Crank-Nicholson scheme 
when Lax-Friedrich’s and Du Fort and Frankel discretization 
are used on it. Du Fort and Frankel discretization increases the 
number of grid points by one at the lower level of the point of 
concern. The increase of grid points involved is responsible for 
the improved accuracy. Since all methods are Crank-
Nicholson based all the schemes developed are unconditional-
ly stable. The methods developed can be applied to any other 
2-D parabolic equations. 
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Appendix  
The following notations are used throughout the presenta-
tions; 
CN- Pure Crank-Nicholson  
CN DF- Crank-Nicholson-Du Fort and Frankel  
CN-LF- Crank-Nicholson-Lax-Friedrich’s  
CN-DF-LF - Crank-Nicholson-Du Fort and Frankel-Lax-
Friedrich’s    
2-D -Two dimensional 
3-D-Three dimensional 
  – Central difference operator 
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